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The frozen parts of the planet, are subject to temperatures
Cryo S p h ere below 0°C for at least part of the year
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Cryosphere Spatial distribution

Glacier |
Permafrost
Ice Sheet
Sea Ice
Ice Shelf I
Snow Cover‘

B Glacier (Antarctic Ice Sheet, Greenland Ice Sheet and Ice cap): 10% of the land area
B Frozen soil (Seasonally frozen soil and Permafrost): 2/3 and 1/4 of the land area
B Snow cover: 30% of the land area in January

(IPCC AR5, 2013)
B Sea ice: 7% of the ocean area



Cryosphere

Cryosphere in China
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Permafrost

Number: 48571
Area: 51766km?

Ice storage: 4500
billion m?3

Area: Permafrost
2.2 million km?

Ground ice storage:

9500 billion m3

Snow cover

yyyy

Area: Stable snow cover
4.2 million km?

Equivalent water: 75
billion m3




Cryosphere’s role globally — albedo and energy
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Cryosphere’s role globally —sea level, ocean circulation .

Sea level (mm)
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SLC (1993-2003) (AR4)

Observed: 3.1 mm/yr,

Cryosphere: 1.1 mm/yr

IPCC AR4
IPCC AR5
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Cryosphere’s role globally — carbon cycle

Permafrost 1672 Pg C (1.67x10% ton C)

(projection: future 200a, 2/3 permaf. thawing, 1.9x101T C emissioon)

Global soil (1m) 1500 Pg C

atmosphere 777 Pg C
Land vegetation 650 Pg C
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Cyosphere Services
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Provisioning services:

Water resource, irrigation,
energy from hydropower, and
information (e.g. ice core).

Regulating services:

Water availability, ecosystem
stability and carbon
sequestration.

Supporting services:
Habitat such as biodiversity
and migration routes for
people and animals.

Cultural services:
Recreational and human
wellbeing, religious, spiritual
services, aesthetics, tourism.




Cryospheric Science  International Background
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Cryospheric Science in International Organizations
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Developing Process of Cryospheric Science in China

Cryosphere science has become a scientific system combining natural science and sustainable

socioeconomic development

Research on
Cryospheric
Components

Ice core, Modern Cryospheric Changes and their

Processes in Snow Influence on Water Resources of Cryosphere
and Ice, Frozen Soil Influence and Adaptation of Service function of 2016

Engineering Cryosphere Cryopshere

Influence and Adaptation

Research on
Cryospheric
Components

Ice core, Modern Cryospheric Changes and their
Processes in Snow Influence on Water Resources
and Ice, Frozen Soil Influence and Adaptation of
Engineering Cryosphere

Key Laboratory of Cryosphere and Environment,

Research on
Cryospheric
Components

Components

Extending scientific framework

2003-2005

Huanghe Station in the Arctic, Institute of
Tibetan Plateau Research (CAS)

and Ice, Frozen Soil
Engineering

1991-1997

Ice core, Modern
Processes in Snow
Key Laboratory of Ice Core and Cold Region Environment

Research on Cryospheric

Investigation and research in the Antarctic of China, Changcheng and
Zhongshan Station, sea ice dynamics in Dalian University of Technology,
Golmud frozen soil station, SKLFSE (CAS)

Glaciology and Geocryology at Lanzhou University, snow research at Xinjiang Institute of
Ecology and Geography (CAS)

19505-1960s Modern glacier investigation, Glaciology and Geocryology at Universities, Lanzhou Institute of
Glaciology and Geocryology (CAS), Tienshan Station

1920s-1940s

Embryo of Glaciology and geocryology in China: investigations of geology, geography, meteorology, hydrology

Expanding research team



Sustainability

Applied research

Applied basic
research

(Qin et al., 2017, NSR) JUNAR ) ISR 5] ER
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® Compiling a series of books on Cryospheric Science
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The cryosphere observation network in China
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B Development of Cryospheric Science

B Climate Change Drives the Development
of Cryospheric Science

B The Earth System Promotes Cryospheric
Science
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Observed global mean surface temperature change A 91.26°C (2020)

1.2 (1.12-1.37
Relative to 1850-1900 using four datasets A
47 1.09°C (2011-2020)
1 ‘ (0.95-1.20)

@) 0 ;
< 08 osass 02014
Z 06}
<
=
O 04
- 0.36°C (1961-1990)
)] (0.23-0.44)
3 02 0.23°C (1900-1999)

0.00°C (1850-1900)

1860 1880 1900 1920 1940 1960 1980 2000 2020
YEAR

_-W‘m..f

The total increase between the average of the 1850-1900 and the 2001-2020
period is 0.99°C. The total increase between the average of the 1850-1900
and the 2011-2020 period is 1.09°C. (IPCC, 2021)



Mass change rate (kg m? yr')

Alaska (1) West Canada and US. (2)

5

Arctic Canada (S) (4)

Global and regional
glacier mass change
rate between 1960 and
2019

....................

New Zealand

—T T

Zemp et al. (2019/20)
Ciraci et al. (2020)
— SROCC

Hugonnet et al. (2021)
Regional estimates'”




Greenland and Antarctic ice sheets have been losing mass-

6000 , Greenland Mass Change Relative to 2015
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Greenland ice sheet

¢ 34[-6-74] Gt/yr  1992-2001
{ 215 [157 - 274] Gt/yr 2002—-2009
: 278 + 11Gt/yr  2006-2015
: 243 [197 - 290] Gt/yr 2010-2019

Antarctic ice sheet

30 [-37 - 97] Gt/yr 1992-2001
147(72 - 221] Gt/yr 2002-2011
155 + 19 Gt/yr 2006-2015
148 [94 - 202] Gt/yr 2010-2016

(IPCC, 2021)
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Arctic sea ice area has decreased since 1979

Absolute énomaly of monthly-mean Arctic sea-ice area during the period 1979 to 2018
relative to the period of 1979-2008
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The sea-ice area has decreased from 1979 to the present every month of the year.
The absolute and relative ice losses are highest in late summer-early autumn.

Averaged over the decade 2010-2019, the monthly average Arctic sea-ice area in
August, September and October has been around 2 million km? (about 25%),
smaller than that during 1979-1988.



Antarctic sea ice area has no trend since 1979

Absolute anomaly of Antarctic sea-ice area
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For Antarctic sea ice, regionally opposing trends and large
interannual variability resulted in no significant trend in
satellite-observed sea ice area from 1979 to 2020 in both
winter and summer. However, it decreases sharply in 2023.



Observed monthly northern hemisphere snow cover changes

a) NH Snow Cover b) NH Snow Cover
Trend (103 km?/yr) Anomaly (10% km?)
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There are negative NH SCE trends in all months between
1981 and 2018, exceeding -50 x 103 km? yr! in November,
December, March and May.



Global mean sea level has risen by 0.19 m (1901-2010) b) Global Sea Level Components
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1901-2010 1.7[1.5 to 1.9] mm/yr
1971-2010 2.0 :1'7 to 23 mm/yr Observed changes in global mean
1993-2010 3.2 [2.8 to 3.6 mm/yr sea level components for 1971-2015
1971-2018 2.3 1.6 to 3.1 mm/yr (IPCC, 2021)
2006-2018 3.7 [3.2 to 4.2] mm/yr SR E RS B ERE SIS RE

1980 1990 2000 2010
Year




48°N

42°N
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30°N

Glacier number: 48571
Aera: 51,766 km?
Volume: 4,500 km3
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Rapid shrinking
« South and east of TP
« Tanshan and Altai

Mean annual glacier area change rate (%/year) during the last decades
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In-situ observed glacier mass balance changes
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Annual glacier mass balance
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Observed glacier mass balance changes

Since 2000, a total glacier mass loss is -19.0+2.5Gt a-'
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Average glacier mass balance before and after 2000 Average glacier mass balance by RS since 2000

Wang et al., 2019 Yao et al., 2022




Permafrost changes in the Third Pole
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The spatial distribution of the permafrost area in the Third Pole
region for the period of 2000-2016 (Ran et al., 2021).
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The total area of permafrost in the Third
Pole for the period of 2000-2016 is
approximately 159.70x10% km?;

The total permafrost area has decreased
significantly from 1960s to 2000s at a
rate of approximately 9.52x10%km? per
decade.

The area statistics of the permafrost types over the Third
Pole in the past 50 years (x10* km?).

Net change

(1960s to 2000s)  Change rate
Permafrost Area Percent  (x10% km?
type (%) decade™ )
Very cold —-8.99 —-72.79 -2.09
Cold —-27.06 —70.12 —6.15
Cool -930 —-27.24 —2.14
Warm —1.18 —4.77 -0.29
Very warm 3.99 9.02 1.06
Likely thawing 0.90 4.34 0.09
Total area —41.66 —23.84 -9.52

Ran et al. (2018)



Permafrost changes in the Third Pole
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The activity layer thickness and air temperature anomaly in the
permafrost region along the Qinghai-Tibet Highway through the
time period 1981 to 2021

Air temperature anomaly (°C)

The active layer thickness
was thickened (1.96 cm/a)

The average air temperature
showed a significant warming
trend (0.61°C/10a)



Permafrost changes in the Third Pole

Permafrost temperature

Annual mean ground temperature

Annual mean ground temperature
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The relationship between warming rate and multiyear mean ground temperature
during the observation period from the (a) active layer monitoring site and the (b)

borehole site.

The ground
temperature showed
significant linearly
increasing trends, and
the permafrost has
warmed at different
rates

The warming rates at a
depth of 10 m ranged
from 0.02°C per decade
to 0.78°C per decade
but varied between 0 °C
per decade and 0.24 °C
per decade at a depth
of 20 m.
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Permafrost changes in the Third Pole

Permafrost degradation

The warming of permafrost and
deepening of the active layer in
ice-rich permafrost regions of the
Third Pole have resulted in
widespread thermokarst
formation that includes thaw
slumps and thermokarst lakes.
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Permafrost changes in the Third Pole « In total, 2669 active retrogressive thaw
slumps (RTSs) were identified in the
Thaw Slumps permafrost regions of the QTP between

2018 and 2020;
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(a) i mean: 1.44 ha mean: 0.6km
1,400 E count: 2669 ' count: 2669 .
1,200 n o « The number of RTSs increased and

RTSs covered a wider surface area from
2008 to 2021. The increases mainly
occurred in 2010 and 2016.
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Permafrost changes in the Third Pole

number

Thermokarst Lakes
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(a) Thaw lake geospatial distributions
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Geospatial distribution of thaw lakes on the Third Pole permafrost regions
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Number and area of thermokarst lakes in the Third Pole, 1980s—2020.

lake area

Li et al. (2022)

The number of thermokarst lakes
continued to increase from the 1980s to
2010, but showed a slight downward
trend from 2010 to 2020

From the 1980s to 1990, the area of the
lakes decreased from 932.5 kmZ2 to 799.25
km2, and in 2010, the area of the lakes
had increased to a peak of 1871.94 km?,
more than double the area in the 1980s

From 2010 to 2015, the area of the lakes
decreased to 1511.12 km2 and then
increased to 1703.56 kmZ2in 2020
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Snow cover changes in the Third Pole
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Snow depth and snow cover days decreasing during last 40 years.

Average annual snow depth trend (cm/y)
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Warming of the climate system is unequivocal

Recent changes in the climate system are widespread, rapid,
intensifying, and unprecedented in thousands of years.

CO,concentration Parts per million
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Observed regional impacts from changes in the ocean and the cryosphere
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IPCC, 2019: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pértner, D.C. Robertzi_
Mintenbeck, M. Nicolai, A. Okem,J. Petzold, B. Rama, N. Weyer (eds.)]. In press. o
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Observed changes in the
cryosphere and impacts
on ecosystems, other
natural systems and
human systems over past
decades that can at least
partly be attributed to
changes in the cryosphere.
Only observations
documented in the
scientific literature are
shown, but impacts may
also be experienced
elsewhere. Shading
denotes mountainous areas.
Confidence levels (high
shown by filled; medium
shown by unfilled tetrix
boxes) refer to confidence
in attribution to
cryospheric changes.



Future cryospheric changes
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5

Anticipated changes in high
mountain hazards under
climate change, driven by
changes in snow cover,
glaciers and permafrost,
overlay changes in the
exposure and vulnerability of
individuals, communities,
and mountain infrastructure.




B Development of Cryospheric Science

B Climate Change Drives the Development
of Cryospheric Science

B The Earth System Promotes Cryospheric
Science




Earth System:

Earth System: as the suite of interlinked physical, chemical, biological and human processes that

cycle (transport and transform) materials and energy in complex, dynamic ways within the system (Steffen
et al., 2006).

1. Forcings and feedbacks within the system, including biological processes, are as important to its
functioning as external drivers.

2. Human activities are an integral part of system functioning (Steffen et al., 2020).

Amsterdam Declaration (2001): the focus was on recognizing the earth as a single system with its own inherent
dynamics and properties at the planetary level, all of which are threatened by human-driven global change. The declaration
concluded that:

1. The Earth System behaves as a single, self-regulating system comprised of physical, chemical, biological and human
components, with complex interactions and feedbacks between the component parts.

2. Global change is real and it is happening now. Human-driven changes to Earth’s land surface, oceans, coasts and
atmosphere, and to biological diversity, are equal to some of the great forces of nature in their extent and impact.

3. Global change cannot be understood in terms of a simple cause—effect paradigm. Human-driven changes cause multiple,
complex effects that cascade through the Earth System.

4. Earth-System dynamics are characterized by critical thresholds and abrupt changes. Human activities could inadvertently
trigger such changes and potentially switch the Earth system to alternative modes of operation that may prove irreversible
and less hospitable to humans and other forms of life.

5. The nature of changes now occurring simultaneously in the Earth System, as well as their magnitudes and rates of change,
are unprecedented. The Earth System is currently operating in a no-analogue state.
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SAFE + JUST CORRIDOR FOR
HUMANITY

In January 2023 at the Davos Winter Forum, Earth Commission co-chairs
Prof. Johan Rockstrom and Prof. Joyeeta Gupta presented the framework
and scientific detail of Earth system boundaries in their presentation,
‘Leading the Charge through Earth’s New Normal’.



The result of our work with over 50
scholarly colleagues from across the globe
- some of whom are pictured here at our
recent Swedish Royal Academy of
Sciences launch - is a suite of “Safe and
Just Earth System Boundaries”.
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Safe and just Earth system boundaries
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Johan Rockstrom'*~~, Joyeeta Gupta*®, Dahe Qin®"*, Steven J. Lade™*"°*, Jesse F. Abrams",
Lauren S. Andersen’, David I. Armstrong McKay*™, Xuemei Bai'®, Govindasamy Bala™,
Stuart E. Bunn', Daniel Ciobanu®, Fabrice DeClerck™™, Kristie Ebi”, Lauren Gifford™,
Christopher Gordon™, Syezlin Hasan™, Norichika Kanie®, Timothy M. Lenton”,

Sina Loriani’, Di: M. Liverman'®, Awaz Mohamed™, Nebojsa Nakicenovic™,

David Obura™, Daniel Ospina”, Klaudia Prodani’, Crelis Rammelt®, Boris Sakschewski',
Joeri . Ben S K 4, Thejna Ti ", Detlef van Vuuren™,
Peter H. Verburg™ ™, Ricarda Winkelmann'**, Caroline Zimm®, Elena M. Bennett™,
Stefan Bringezu™, Wendy Broadgate®, Pamela A. Green™, Lei Huang™, Lisa Jacobson®,
Christopher Ndehedehe'***, Simona Pedde®*, Juan Rocha®”, Marten Scheffer”,

Lena Schulte-Uebbing™*, Wim de Vries™, Cunde Xiao®>, Chi Xu*®, Xinwu Xu™®,
Noelia Zafra-Calvo™ & Xin Zhang**

The stability and resilience of the Earth system and human well-being are inseparably
linked'*, yet their interdependencies are generally under-recognized; consequently,
they are often treated independently*®. Here, we use modelling and literature
assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the
biosphere, water and nutrient cycles, and aerosols at global and subglobal scales.

We propose ESBs for maintaining the resilience and stability of the Earth system (safe
ESBs) and minimizing exposure to significant harm to humans from Earth system
change (a necessary but not sufficient condition for justice)’. The stricter of the safe
orjustboundaries sets the integrated safe and just ESB. Our findings show that justice
considerations constrain the integrated ESBs more than safety considerations for
climate and atmospheric aerosol loading. Seven of eight globally quantified safe and
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Science shows that global warming of 1.5 °C and 2 °C will be exceeded this century
unless deep reductions in CO, and other greenhouse gasses occur rapidly in the
coming decades.

Achieving global net zero CO, emissions is a requirement for stabilizing the global
surface temperature.



Current status of global Earth system boundaries
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The sobering news: the
assessment identifies that
human activities have pushed
seven Earth system
boundaries beyond their
thresholds and into the risk
zone.

The good news: The safe and
just boundaries account for
Earth system resilience and
human wellbeing in an
integrated framework to help
actors meet these challenges.

We have a short period of time - a window of opportunity - to take responsibility and
urgent action, and start moving towards the “safe and just space”.



HOW CAN WE LIVE WITHIN THE AND JUST
EARTH SYSTEM BOUNDARIES?



The science calls on Ieag

“

1 1) Think beyond climate- take a whole-e stainab‘i”lity; understand

.
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3) Flnally, work together - Our upcomlng ane shows, the top 200 Iarge emitter
__Cities and top 500 emitter companles ften co-locate. But they are not necessarily
“working together. There is a large, ymﬁpped opportunity for these cities and
» companies to brlng thelr target ambition abreast.

w '“sL ‘;ﬂ




A WINDOW OF ‘

Take home message

J Cryospheric Science is transdisciplinary and integration
[J Take action around the Earth system beyond climate change
1 Do not miss the window of opportunity

1 Integrating natural and social sciences, strengthening "export"
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